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E N U M E R A T I O N  OF Q-ACYCLIC 
SIMPLICIAL COMPLEXES 

BY 

GIL KALAI 

ABSTRACT 

Let ~ = ~(n, k) be the class of all simplicial complexes C over a fixed set of n 
vertices (2 < k < n) such that: (1) C has a complete ( k -  1)-skeleton, (2) C 
has precisely ( ~ )  k-faces, (3) Hk(C) = 0. We prove that for C E ~g, Hk ,(C) is 
a finite group, and our mare result is: 

2 I Ilk I (C)  I ~ = .  (7~) .  
CE~ 

This formula extends to high dimensions Cayley's formula for the number of 
trees on n labelled vertices. Its proof is based on a generalization of the matrix 
tree theorem. 

1. Introduction 

The purpose  of this paper  is to general ize Cayley 's  formula  for the n u m b e r  of 

label led trees, to k -d imens iona l  simplicial complexes with a comple te  (k - l ) -  

skeleton.  The  technique  of proof is a genera l iza t ion  of the matr ix  tree theorem,  

see [2, 7]. The main  result  of this paper  is the following: 

THEOREM 1. Let ~ = ~(n, k)  be the class of all k-dimensional simplicial 

complexes C over a fixed set V of n vertices ( 2 =  < k <= n), such that: 

(1) C has a complete (k - 1)-skeleton ; 

(2) C has precisely (~1) k-faces; 

(3) g (c) =0. 
Then 

~'~ ]Hk-,(C)12 = n ("k-2). 
CEqg 

All homology  groups with unspecif ied coefficient ring in this paper  are with 

in teger  coefficients. 
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REMARK. If we set k = 1 in Theorem 1, then q~ becomes the set T,  of all trees 

on a fixed set of n vertices. The assertion of Theorem 1 then reduces to Cayley's 

formula IT. I = n "--~, provided we use the reduced homology/2/,,(C) [8, p. 168], 

which, for a connected graph, is 0 rather than Z. In fact, our proof of Theorem 1, 

applied to the case k = 1 with reduced homology, reduces to the proof of 

Cayley's formula via the matrix tree theorem. 

Theorem 1 is proved in Section 3. 

Further results concerning tree enumeration can be generalized in the same 

spirit. Some examples will be considered in Section 4, e.g.: 

For a k-dimensional simplicial complex C and a face u E C, define the degree 

degcu  of u to be the number of k-faces of C which include u. For V = 

{x , , . . . , x .} ,  define: 

C~(n,k ; d , , ' " , d . ) = { C E  C~(n,k):degcx, = d, for 1_-< i_-< n}. 

THEOREM 3. Put 

Then 

n - 2 )  
m~= k 1 ' m 2 = (  k " 

n - 2 )  

( m2 ) 
~ '~{ [Hk_ , (C) [ - :CEC~(n , k ;d , , . . . , d . ) }  = d , - m , , d 2 - m , , . . . , d n - m ,  " 

In particular, C~(n, k ; d , , . . . ,  d , ) ~  ~J iff d, >- m, for all i, and ET=, (d, - m~) = 

WI2. 

It would be interesting to find similar formulas when the degrees of the p-faces 

are specified for some fixed p > 0. 

In Section 5 we apply Theorem 1 to show that for fixed k > 1, and for large n, 

the average of the order of Hk-I(C) over all C @ C~(n, k) is very large. We also 

discuss some open problems concerning the estimation of the number of 

complexes in C~(n, k) and in some related families of complexes. In Section 6 we 

discuss the duality map between C~(n +2,  k) and C~(n +2,  n -  k). In the final 

section we describe the situation for k = 2 and n _-< 6. It turns out that for n =< 6 

all members of C~(n,2) are collapsible, and therefore have trivial homology 

groups, except for the triangulations of the projective plane p2 with six vertices 

that are obtained by identifying opposite faces of a regular icosahedron. Since 

H1(P ~-) = Z:, each of these complexes is counted in Theorem 1 four times. 
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For a simplicial complex C, fe(C) will denote the number of p-faces of C. For 

a face s ~ C, the link of s in C, link (s, C) is defined by 

link(s, C) = {t \ s : t E C, t D s}. 

The author would like to thank Professor Micha A. Perles for many fruitful 

discussions and helpful suggestions. 

2. Algebraic topology preliminaries 

For basic definitions and results concerning simplicial complexes and homol- 

ogy theory the reader should consult [6] or [8], or any other textbook on 

algebraic topology. 

Let C be a simplicial complex and let V = {xl," �9 ", x,} be the vertex set of C. 

Let  s be a (p - 1)-face and let t be a p-face of C. The incidence number I(s, t) is 

defined as follows: If s ~  t, then I(s, t) = 0. If s C t, suppose t = {x~, �9 �9 x,p} where 

i o < i ~ < . . . < i  e. If s={x~, . . . , i , , , . . . ,x ,~} (^ means deletion), then I(s , t )= 
( - 1 ) ' .  

We regard the array I(s, t) as a rectangular matrix of order  fe-l(C)x re(C), 
with rows corresponding to (p - 1)-faces, and columns corresponding to p-faces. 

This matrix will be called the p-th incidence matrix of C, and denoted by I p (C). 

REMARK. Usually it is assumed that the faces of C are oriented, and for s C t 

the incidence number I(s, t) is 1 if s is oriented coherently with t and - 1  

otherwise. Our definition coincides with this definition when the faces of C are 

oriented according to the order  of their vertices. In fact, the results and proofs of 

the next sections will not depend on our concrete definition of I(s, t). 

Recall that the p-th chain group Ce(C ) (p =>0) is the free abelian group 

generated by the p-faces of C. The incidence matrix F(C)  (p >= 1) represents the 

chain group homomorphism Oe : Cp (C)---~ Ce-I(C), i.e., the boundary operation, 

with respect to the standard bases of Ce(C ) and Ce-I(C). 

Recall that Ze(C ) and Be(C ), the groups of p-cycles and p-boundaries of C, 

are defined by Ze(C)= kerO e and Be(C)=imOe+~. Since OeOp+~ = 0  (equival- 

ently: Ie(C)Ip+l(C ) = 0), Be(C ) C Ze(C ), and the p-th homology group of C is 

defined by He(C ) = Zp (C) / Be(C ). The abelian group He(C ) can be written as a 

sum Hp(C) = Fe(C)O Te(C), where Fe(C ) is a free abelian group and To(C) is a 

finite abelian group, tip(C) = rank Fe(C) is called the p-th Betti number of C. 

C is acyclic if Ho'(C) = Z (i.e., C is connected) and Hp (C) = 0 for all p > 0. C 

is Q-acyclic if Ho(C, Q ) =  Q and Hp(C, Q ) =  0 for all p > 0. Equivalently, C is 
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Q-acyclic if/3o(C) = 1 and/3p(C) = 0 for all p > 0. (Thus Hp(C) is a finite group 

for all p > 0.) 

We shall use the following elementary result: 

PROPOSITION I. Let K be a complete k-dimensional complex. Then Zk(C) is 
freely generated by the boundaries of all (k + 1)-faces, on vertices of K, that 
contain a fixed vertex. 

Occasionally we shall need the concept of collapsibility of a simplicial complex 

(see also [4]). A face s of a simplicial complex C is free if s is included in a 

unique maximal face of C. Let C be a simplicial complex, t a maximal face of C 

and s a free subface of t of dimension dim t - 1. The operation of deleting t and 

s from C is called an elementary collapse. C is collapsible if it can be reduced to 

the void complex by a sequence of elementary collapses. If C collapses to C', 

then Hk(C)= Hk(C') for every k. (In fact, C is homotopy equivalent to C'.) 

Thus, if C is collapsible it is acyclic. 

3. Proof of the main theorem 

For fixed k > 1 and n > k, let K be the complete k-dimensional complex on 

the vertex set V = { x l , ' '  .,x,}. Consider the class sr = M(n, k) of all subcom- 

plexes of K with a complete ( k -  1)-skeleton. 

For C E M(n, k) define the reduced incidence matrix I~(C) to be the ("El)• 

fk(C) matrix obtained from I ~ (C) by deleting all the rows that correspond to 

(k -1)-faces which contain the vertex x~. 

Let cs = ~r k) be the class of all members C of M(n, k) that satisfy any two 

of the following three additional conditions: 

(1) fk(C)= (V ~) (i.e., C has (~-1) k-faces). 

(2) Hk(C) = O. 
(3) Hk-I(C) is a finite group. 

PROPOSITION 2. If C @ ~(n,  k ), then any two of the three assertions (1), (2), 

(3) imply the third. 

PROOF. We use the following known simple identity for the Euler charac- 

teristic of C: 

k k 

(,) x(C) = ,~, ( - 1)'f, ( C )  = ,~, ( -  1)'/3, ( C )  
J = 0  ~ = 0  

(see e.g., [8, p. 172]). 

Note that if C Esg(n ,k)  then C is connected (hence /3o(C) = 1), and 
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H,(C) = 0 for all 0 <  i < k - 1. This follows from the fact that C has a complete 
(k - 1)-skeleton. Thus the right hand side of (*) reduces to 1 + ( - 1) k '/3~ t(C) + 

(-1)k/3k(C). Note also that 

k-~ k ~ ( ( n ) = l _ ( _ l f ( n - 1 )  (-1)'f,(C)= - 1 ) '  i + 1  k ' 
I = 0  I = 0  

and therefore (*) reduces to 

(**) f~ (C)- (n;1)=f lk (C)- f l k  l(C), 

Finally note that Hk ,(C) is finite iff/3k ,(C) = 0, and that Hk(C) = Z ( C ) ,  and 

therefore H k ( C ) = 0  iff /3k(C)=O. This, together with (**), clearly implies 

Proposition 2. �9 

REMARK. By Proposition 2, ~(n,  k) is precisely the family of k-dimensional 

Q-acyclic complexes, on the vertex set V, with a complete (k - 1)-skeleton. 

THEOREM 1. 

]H~ ,(C)I -~ = n ("~-=). 
CEC~(n,k ) 

OUTLINE OF PROOF. First we show (Lemmas 1, 2) that for C E ~/(n, k), 

det I~(C) ~ 0 iff C E ~(n,  k), and that for C C ~(n,  k), H~_I(C) is a finite group 
and det I~ (C)=  + [Hk_I(C)]. We define M = I~(K)If(K) tr (K is the complete 

k-dimensional complex on V). The Cauchy-Binet  Theorem implies that 

det M = ~] {(det I~(C)): : C ~ C~(n, k)} 

= E {[ Hk-a(C) l 2: C E  ~(n,  k)}. 

It remains to show that 

det M = n ("k-2) 

This is done by showing that the eigenvalues of M are 1 and n with multiplicities 

(~5~) and ("k -2) respectively. 

Now we turn to the detailed proof of Theorem 1. 

LEMMA 1. 

rankU(K)=rankU,(K)=( n -  l ) 
k " 
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PROOF Each column of I k (K) is a vector in Bk-~(K) (w.r.t. the standard base 

of Ck ,(K)) and therefore (by Proposition 1) a linear combination with integer 

coefficients of the columns corresponding to k-faces that contain Xl. There are 

("~ ') such columns, and therefore: 

ranklk,(K)<ranklk(K)< ( n - l ) 
~ k " 

But I~(K) restricted to these columns is just a signed permutation matrix: 

Each ( k -  1)-face not containing xt is included in exactly o.ne k-face that 

contains xl, and vice versa. Thus I~(K) restricted to these columns is regular and 

the Lemma follows. �9 

LEMMA 2. Suppose C E sr k) and fk(C) = (nk-1)-  Then: 
(1) det I,k(C) = 0  if[ Hk(C)~O. 
(2) If H k ( C ) = 0  then detLk(C) = ----[Hk-l(C)[. 

PROOF (1) First note that Hk(C)=Zk(C) (since dim C = k ) ,  and that 

rank I~(C)= rank Ik(C) (by Lemma 1). Define rn = ("k ~), and let the columns 

c l , . . . ,  c,, of Ik,(C) correspond to the k-faces s~, . . . ,  sm of C. Then det Ik,(C)= 
0,~-~ rank I,k(C)= r a n k l k ( C ) <  m ~ There are integers a~, . - . ,  am, not all zero, 

s.t.  

i = l  

= o , - - - ,  Y~o~,,gs, = ,9 o~,s, = O , - - , H ~ ( C ) =  Zk(C)#O. 
t = l  

(2) Zk-1(C)= Zk-I(K)= Bk-l(K) is the submodule of Ck-~(C) generated by 

the columns of I*(K). Bk_~(C) is the submodule of Ck-~(C) generated by the 

columns of Ik(C). Thus we have: 

Hk-l(C) = I k (K)Z (k"+,) / i k (C)Z ("k-'). 

CLAIM. 
n--1 n - I  

I k (K)Z (~+') / I k (C)Z ("k ') = I~(K)Z (k~+') / I~(C)Z (71) = Z ( k )  / i k(C)Z ( ~ ) .  

PROOF OF THE CLAIM. Note that the operation of deleting rows corresponding 

to faces  that contain x, induces an isomorphism 1 of Ik(K)Z(k~_! onto 

Ik,(C)Z (~+'), and this isomorphism maps Ik(C)Z ('k- ) onto Ik,(C)Z ( - ). The 

equality 

I,k(K)Z (:+') = Z ("k-') 

holds, since Ik,(K) has a signed permutation submatrix of order ("k-l). �9 
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It follows that 
n--1 n--1 

Hk_ , (C)=Z  ( k ) / I ~ ( C ) Z  ( k ) .  

A standard result concerning lattices in Z" (see [3, ch. 1]) asserts that if A is an 

integer valued m x m matrix with [de tA ]= t # 0 ,  then Z m / A Z  '~ is a finite 

group of order t. Therefore in our case Hk-I(C) is a finite group of order 

I det I,k(C) [. �9 

PROOF OF THEOREM 1 (cont.). Define M = U,(K)U,(K) 'r. M is a square 

matrix of order ("k-~). M(s, g) is the scalar product of the rows of I~(K) that 

correspond to the (k -1)-faces s and g of K. Thus 

l 
n - k  

M(s, g) = 0 

I(s, s U g)I(g, s t..I g) 

if s = g, 

if I s U g [ > k + l ,  

if I s U g [ = k + l .  

LEMMA 3. det M = n (nkl). 

PROOF Let K* be the restriction of K to the vertex set V* = {x2,  x3 ,"  �9 ", Xn}.  

K* is the complete k-dimensional complex over V*. The proof is based upon 

the following observations: 

(1) M - I  = Ik (K*)U(K*)  '~. 

Ik (K *) is obtained from I f (K)  by deleting the columns of Ik,(K) that 

correspond to k-faces of K that contain xl. The scalar product of two different 

rows in I f (K)  corresponding to the (k -1)-faces s and g is the same as their 

product in Ik(K*), since if t = s O g is a k-face then x, ~ t. In every row of I f (K) 
there is exactly one non-zero entry in columns corresponding to k-faces which 

contain xl. Thus in passing from J~f(K) to U (K*) the scalar product of every row 

with itself is reduced by one. 

(2) M - nI = - Ik- '(K*) 'r I k ~(K*). 

Note that 

(I k '(K*) '~I k '(K*))(s, g) = t 

k if  s =~, 

0 if [s A g [ < k - 1 ,  

l ( s n L s ) I ( s n ~ , g )  if J s n ~ ] = k - 1 .  
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Thus all the diagonal entries on both sides of (2) are - k .  Now consider the 

(s, g)-entry, where s, g are distinct (k - 0-faces of K*.  If I s U g I > k + 1 then 

I s n g l  < k - l ,  and we get 0 on both sides o[ (2). If [ s U g l = k + l  then 

Is O g { = k - I, and since 02(s U g) = 0, we have 

or, equivalently, 

I ( s  n g, s)I(s ,  s u g) + I ( s  n g, g)I(g, s U g) = 0 

I(s,  s U g ) I (L  s U g) = - I ( s  n~ ,  s ) I ( s  n ~, ~), 

which is exactly what we need. 

Now we return to the proof of the Lemma. From (1) and Lemma i we obtain: 

rank (M - I)  < rank I ~ (K*) = (~-2). 

From (2) and Lemma 1 we obtain: 

rank (M - nI)  < rank U - I ( K  *) = (~,7_1). 

Thus 1 is an eigenvalue of M with multiplicity ml, 

m l > (  k 
n 

Similarly, n is an eigenvalue of M with multiplicity m2, 

n n - 2 )  

Since 

ml+m2<=(n-l) 
k ' 

PROOF OF THEOREM 1 (end). The Cauchy-Binet  Theorem (see [4, p. 9]) states 

that if R and S are matrices of respective sizes p • q and q • p with p _-< q, then 

d e t ( R S ) = ~ Z d e t ( B ) d e t ( C ) ,  where the sum extends over all p Xp square 

submatrices B of R and C of S such that the columns of R in B are numbered 

the same as the rows of S in C. Thus we have, by Lemma 3 and Lemma 2, 

it follows that 

rn l=  k , rn2= , and d e t M = n  
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n ("k2) = det M 

='Z {det(I~(C)I~(C)'~): C E  ~l(n,k), f k ( C) =  ( n  ~- 1)} 

= c~,.k)[Hk-,(C)]2. 

4. Further high-dimensional enumeration theorems 

Further results concerning tree enumeration can also be generalized to high 

dimensions. The following examples may serve as an illustration. Associate with 

each face t of K ( = the complete k-complex on {xl,. �9 x,}) a variable e,. We 

assume that all these variables commute, and write e, for e~,}. Define, for 

C ~ ~(n,  k), II(C) = II{e, : t E C, dim t = k}. Let G be a member of ~ (n ,  k) 

with fk(G) = b. For a k-face t of G define Y(t, t) = e,. We regard Y( = Y(G)) as 

a diagonal matrix of order b. The following result is an immediate consequence 

of Lemma 2 and the Cauchy-Binet Theorem. 

THEOREM 2. For any G E sg(n, k) 
(4.1) det(Ik,(G)Y(G)If(G)'r)='E{IHk 1(C)12II(C): CEq~(n,k) ,  CCG}.  �9 

Now we pass to Theorem 3 from Section 1. For C E s4(n, k) define IIo(C) = 

II7=0 e~ eg~,. Theorem 3 is clearly equivalent to 

Then 

(4.2) 

THEOREM Y. Let 

m l =  ( ~ - 2 1 ) ,  m z = ( n k 2 ) .  

+ e2 + . . . +  e, l. 

SKETCH OF PROOFOF THEOREM 5'. Denote the left hand side of (4.2) by A, and 

the right hand side by B. For a face u define cro(u) = II{e. : x~ E u}, and put 

d(u) = 7r0(u) '/2. For two p-faces u and w which do not contain xl, define 

d(u)  if u = w, 

Dp(u, w)= 0 if u~  w. 

We regard Dp as a diagonal matrix of order (~,T~). 
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Apply Theorem 2 with G = K and with the substitution e, ~ 7to(t). This 

substitution yields A on the right hand side of (4.1). On the left hand side of (4.1) 

we obtain a determinant that can be rewritten as det(Dk_l~ID~ 1), where 

lQf(s,s)='s and f . I(s ,s ')=M(s,s ')d(sAs')  for s / s ' .  (Here 

M = Ik,(K)I~(K) '~, as in the proof of Theorem 1.) It remains to show that 

det(D~_l]f/Dk_~) = B, or equivalently, that de t lQ = e'f'(el + e :+ . . .  + e,) ~'- 
(since (det Dk_l) 2 = II,"=~ e?,). 

As in the proof of Lemma 3, it suffices to show that rank ()Q - eJ)  <= m2 and 

rank ( )~ / -  (el + " ' - 4 - e , ) I )  _-< ml. This is done by the following observations: 

(1) / f / -  e J  = jjt~, where J(s, t) = d-l(s)Ik(K*)(s, t)d(t). Here K* = K \ x~, 

as in the proof of Lemma 3, s ranges over all (k - 1)-faces of K*,  and t ranges 

over all k-faces of K*.  

(2) / ~ - - ( e l + ' ' "  +e,)I  = -] 'Q,  where ](r,s) = d-l(r)U-~(g*)(r,s)d(s). 
(Here r ranges over all (k - 2)-faces of K*.)  �9 

For C �9 sg(n, k) define: 

I L ( C )  = nt"~~ = --t~.  . u �9 C, dim u p}. 

PROBLEM1. Find an explicit evaluation of 

p > O .  

Ec~,,.k)l Hk-l(C)lqIp(C) for 

5. An application 

Here  we shall prove as a corollary of Theorem 1, that Q-acyclic complexes in 

~ ( n ,  k) (i.e., members of CO(n, k)) are, on the average, far from being acyclic. 

THEOREM 4. For fixed k > 1, 

(1) If C E C~(n, k) then 

[ Hk-l(C)[2 __< (k + l) ("k-:) . 

(2) For sufficiently large n (i.e., n > no(k)), the expectation of I Hk_I(C)[ 2 over 
all members of ~(n,  k) satisfies: 

E(IH~-l(C)12: C e ~ (n ' k  ) )> (  kT+ l ) ("F~) 

PROOF. (1) Suppose C E ~(n,  k), and let t be a k-face of C. The number  of 

nonzero entries in the column of I~(C) that corresponds to t is k + 1 if x~ ff s, or 

one if xl �9 s. Note that 

degcxl_-> k - 1  " 
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(This follows from Theorem 3.) Therefore at most (\-2) k-faces of C miss Xl~ It 

follows by Lemma 2 and Hadamard's  inequality, that 

(2) Define 

IH~-~(C) I = I det (I~(C)) I --< ~ (~-z). 

n - 1  
(5.1) S~o(n,k)={CEs~(n,k):fk(C)=( k )} .  

By Theorem 1 the average of IH~_~(C)12 over ~(n,  k)  is 

n (~ -)-I ~r k)l '=> n (,-2). I Sgo(n, k)l-' 

(I ( n (~2) k + (~-2) n - 1 n _(~-1) 
= �9 ~ n  �9 T.  

n -  k " k + l  
k 

By Stirling's Formula, we can continue: 

( ) ) > n (~2). n - 1 (\-~). e-(~-x), n = . k +_____11 (~-1) 
= k k + l  en 

One can easily check that the last expression is 

for n large. �9 

We conclude this section with some problems concerning possible estimations 
of the number of complexes in ~(n,k) and in some related families of 
complexes. 

Consider the following subfamilies of ~o(n, k) (see (5.1)): 

qC0(n, k) - -  acyclic complexes in J ( n ,  k). 

N(n, k) - -  collapsible complexes in s~(n, k). 

N(n, k): A complex C in ~o(n, k) belongs to N(n, k)  if C does not contain 

the boundary of a (k + 1)-simplex. 

Obviously ~(n ,  k) C ~o(n, k)  C C~(n, k)  C l~(n, k)  C J ( n ,  k). 

PROBLEM 2. Estimate I~r I % ( n , k ) l ,  and I ~ ( n , k ) l .  
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Let k > 1 be fixed. We conjecture that for sufficiently large n most complexes 

in g3(n, k) are also in ~(n,  k). We also conjecture that for n large enough most 

complexes in f , (n ,  k) are not in @(n, k). (Note that the average degree of a 

(k - 1)-face in ~(n,  k) is (k + 1)(n - k)/n.) 

6. Dua l i ty  

It follows from Theorem 1 that 

E IRk , (c)r=(n+2)  (2)= E t/~. u l(C)l 2 
CE~,(n+2,k) CE~(n+2,n k) 

f o r O <  k < n. 

As we shall see, there is a natural bijection C--> B(C) between f ( n  + 2, k) 

and qg(n+2, n - k )  such that /g/k , (C)~/F/ ,  k ~(B(C)). (Here we use the 

reduced homology /F/.(C), so as to include the values k = I and k = n - 1.) 

Let V = {x~,. •., x,+2} be a fixed vertex set. For a simplicial complex C on the 

vertex set V, define 

B(C)={S C V : V \ S K  C}. 

B(C) is sometimes called the blocker of C. 

The reader will easily verify the following properties of B(C). 
1. B(C) is a simplicial complex. 

2. C C C '  if[ B ( C ' ) C B ( C ) .  
3. S ( B ( C ) )  = C. 

4. ~ (C )+  g , (B(C))  = G'+~-~). 
5. C is isomorphic to C' iff B(C)  is isomorphic to B(C'). 
6. C E ~ ( n + 2 ,  k) iff B ( C ) ~ ( n + 2 ,  n - k ) .  
7. C collapses to C' if[ B(C') collapses to B(C). 

THEOREM 5. (a) C E ~ ( n + 2 ,  k) iffB(C)Cqg(n+2, n - k ) .  
(b) For CC f ( n  +2,  k), /g/k ,(C)--~/2/, k ,(B(C)). 

PROOF (sketch). It follows from the Alexander Duality Theorem (see [6, ch. 

5] or [1, vol. 3 pp. 24-26] for a suitable version of the Alexander Duality 

Theorem),  that for a simplicial complex C 

ICIk ,(C) ~- ;I° k(U(C)). 

Let/2/~ (C) = F , ( C ) O  T~(C), IJF(C) = F(C)@ T(C), where F~(C) [ F  (C)I and 

T,(C) [T~(C)] are respectively the free part and the torsion of/eL (C) [/2F (C)]. It 

is known (see [6, p. 168] or [8, pp. 241-244]) that 
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F ' ( C ) ~  F~(C) and T ' ( C ) ~  T, ,(C). 

It follows that C E ~ ( n + 2 ,  k) iff B ( C ) E ~ ( n + 2 ,  n - k ) ,  and that for C E  

~(n +2, k) 

ICIk_,(C)~- IFI" k(B(C))~- T" k(B(C))~ T. k , (B (e ) )~  IdI._k ,(B(C)). • 

Finally note that if C ~ C~(n + 2, k;  m + d, , .  •., m + d,+2), then 

B ( C ) E  C~(n +2,  n - k ; m '  + d,,. . ",m' + d,+2), 

( )aodm ( ) where m =  k - 1  n - k - 1  ' 

7. Some examples 

In this section we describe in some detail the families ~(n,  2) for n :< 6. 

If C E %~(n, 2) and x is a vertex of C, then link(x, C) is a graph. Using the fact 

that H~(C, Q) = 0, it is easy to show that link (x, C) is connected for every vertex 

X. 

~(3, 2) consists of a single complex - -  a triangle. %~(4, 2) consists of the four 

isomorphic complexes obtained by taking three of the 2-faces of the simplex on 

four vertices. ~ (5, 2) consists of three isomorphism types of complexes which are 

dual (in the sense of Section 6) to the three isomorphism types of trees on 5 

vertices. All these complexes are collapsible. 

For C E ~(6,2) ,  if some vertex z has degree 4, then link(z, C) is a tree, and 

therefore the faces that contain this vertex can be collapsed one by one, and the 

whole complex collapses to a complex in ~(5 ,2)  and thus is collapsible. There 

are altogether 45,936 ( =  6 6 -  720) such complexes. The remaining complexes, 

with all vertices of degree 5, fall into four isomorphism types (see Table 1). Three 

of them, with automorphism groups of orders 2, 3 and 10 respectively (altogether 

672 complexes), are again collapsible and are counted in Theorem 1 just once. 

The last isomorphism type contains the triangulations of the projective plane p2 

that are obtained by identifying opposite faces of a regular isocahedron. Here  

the automorphism group is of order 60, and therefore there are 12 different 

triangulations. Since H~(P 2) = Z2, each such complex is counted four times in 

Theorem 1. 

Finally we would like to draw attention to the subfamily of self-dual 

complexes in ~(6, 2). C E M(2n, n - 1) is self dual if B(C) = C or equivalently if 

s f~ t ~  ~3 for every two (n - 1)-faces s and t of C. 

There are 4 isomorphism types of self-dual complexes in ~(6,  2) (see Table 2). 
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Table 1. Complexes in ~(6,2) with degree sequence (5,5,5,5,5,5) 

C 2-faces link of Aut(C) H~(C) * 
1 2 3 4 5 6 

C~ 123134145 156126 ~f~ ~ f  ~ ~f~ ~f~ @ D,,, 1 72 
234 345 456 256 236 

C2 123 134 145 156 126 ~ @ @ @ @ ~ Z2 1 360 
234 235 256 346 456 

C3 124125 134145136 @ ~ d ~  @ @ @ Z3 1 240 
235 236 256 346 356 

P2 123 134 145 156 126 ~x'} ~ '~  ~A'~ ~/~ ~"~ & As Z2 12 
235 346 245 356 246 k_2 k_2 V2 k5 k_2 k~/ 

* Number of complexes in ~(6,2) isomorphic to C (=720/IAut(C)l). 

Table 2. Self-dualcomplexesin ~(6,2) 

C degrees 2-faces Aut(C) * 

D1 10, 4, 4, 4, 4, 4 123 124 125 126 134 $5 6 
135 136 145 146 156 

D2 8, 6, 4, 4, 4, 4 123 124 125 126 134 (Z2) 3 90 
135 146 156 245 236 

D3 6, 6, 6, 4, 4, 4 123 124 134 125 136 $3 120 
156 235 236 246 345 

P2 5, 5, 5, 5, 5, 5 See Table 1 

* Number of complexes in c~(6,2) isomorphic to C. 

The total number of self-dual complexes which are not isomorphic to P2 is 63 
( = X/66). Moreover 

~{ I H,(C)12Ho(C) : C c q~(6, 2), B(C) = C, C~  p2} = (el  2 + e~ + . . .  + e2) 3 [ I  e~. 
i = l  

A trivial check shows a similar phenomenon in q~(4, 1). 

PROBLEM 3. Extend the above observation to self-dual complexes in 
(2n, n - 1). (For a related result concerning enumeration of trees see [9].) 
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