ENUMERATION OF Q-ACYCLIC SIMPLICIAL COMPLEXES

BY

GIL KALAI

ABSTRACT

Let $\mathscr{C} = \mathscr{C}(n, k)$ be the class of all simplicial complexes C over a fixed set of n vertices ($2 \le k \le n$) such that: (1) C has a complete ($k-1$)-skeleton, (2) C has precisely $\binom{n-1}{k}$ k-faces, (3) $H_k(C) = 0$. We prove that for $C \in \mathcal{C}$, $H_{k-1}(C)$ is a finite group, and our main result is:

$$
\sum_{C\in\mathscr{C}}|H_{k-1}(C)|^2=n^{\binom{n-2}{k}}.
$$

This formula extends to high dimensions Cayley's formula for the number of trees on n labelled vertices. Its proof is based on a generalization of the matrix tree theorem.

1. **Introduction**

The purpose of this paper is to generalize Cayley's formula for the number of labelled trees, to k-dimensional simplicial complexes with a complete $(k - 1)$ skeleton. The technique of proof is a generalization of the matrix tree theorem, see [2, 7]. The main result of this paper is the following:

THEOREM 1. Let $\mathscr{C} = \mathscr{C}(n, k)$ be the class of all k-dimensional simplicial *complexes C over a fixed set V of n vertices* $(2 \leq k \leq n)$, such that:

(1) *C* has a complete $(k - 1)$ -skeleton;

(2) *C* has precisely $\binom{n-1}{k}$ *k*-faces;

$$
(3) Hk(C) = 0.
$$

Then

$$
\sum_{C\in\mathscr{C}}|H_{k-1}(C)|^2=n^{\binom{n-2}{k}}.
$$

All homology groups with unspecified coefficient ring in this paper are with integer coefficients.

Received July 21, 1980 and in revised form March 21, 1983

REMARK. If we set $k = 1$ in Theorem 1, then $\mathscr C$ becomes the set T_n of all trees on a fixed set of n vertices. The assertion of Theorem 1 then reduces to Cayley's formula $|\mathbf{T}_n| = n^{n-2}$, provided we use the reduced homology $\hat{H}_0(C)$ [8, p. 168], which, for a connected graph, is 0 rather than Z . In fact, our proof of Theorem 1, applied to the case $k = 1$ with reduced homology, reduces to the proof of Cayley's formula via the matrix tree theorem.

Theorem 1 is proved in Section 3.

Further results concerning tree enumeration can be generalized in the same spirit. Some examples will be considered in Section 4, e.g.:

For a k-dimensional simplicial complex C and a face $u \in C$, define the degree $\deg_{\mathcal{C}} u$ of u to be the number of k-faces of C which include u. For $V =$ ${x_1, \dots, x_n}$, define:

$$
\mathscr{C}(n,k; d_1,\dots, d_n)=\{C\in \mathscr{C}(n,k): \deg_C x_i=d_i \text{ for } 1\leq i\leq n\}.
$$

THEOREM 3. *Put*

$$
m_1=\binom{n-2}{k-1},\qquad m_2=\binom{n-2}{k}.
$$

Then

$$
\sum \{ |H_{k-1}(C)|^2 : C \in \mathscr{C}(n,k; d_1,\cdots,d_n) \} = {m_2 \choose d_1-m_1,d_2-m_1,\cdots,d_n-m_1}.
$$

In particular, $\mathscr{C}(n, k; d_1, \dots, d_n) \neq \emptyset$ *iff* $d_i \geq m_1$ *for all i, and* $\Sigma_{i=1}^n (d_i - m_1) =$ *WI2.*

It would be interesting to find similar formulas when the degrees of the p-faces are specified for some fixed $p > 0$.

In Section 5 we apply Theorem 1 to show that for fixed $k > 1$, and for large n, the average of the order of $H_{k-1}(C)$ over all $C \in \mathcal{C}(n, k)$ is very large. We also discuss some open problems concerning the estimation of the number of complexes in $\mathcal{C}(n, k)$ and in some related families of complexes. In Section 6 we discuss the duality map between $\mathcal{C}(n + 2, k)$ and $\mathcal{C}(n + 2, n - k)$. In the final section we describe the situation for $k = 2$ and $n \le 6$. It turns out that for $n \le 6$ all members of $\mathcal{C}(n,2)$ are collapsible, and therefore have trivial homology groups, except for the triangulations of the projective plane $P²$ with six vertices that are obtained by identifying opposite faces of a regular icosahedron. Since $H_1(P^2) = \mathbb{Z}_2$, each of these complexes is counted in Theorem 1 four times.

For a simplicial complex *C*, $f_p(C)$ will denote the number of p-faces of *C*. For a face $s \in C$, the *link* of s in C, link (s, C) is defined by

$$
\text{link}(s, C) = \{t \mid s : t \in C, t \supset s\}.
$$

The author would like to thank Professor Micha A. Perles for many fruitful discussions and helpful suggestions.

2. Algebraic topology preliminaries

For basic definitions and results concerning simplicial complexes and homology theory the reader should consult [6] or [8], or any other textbook on algebraic topology.

Let C be a simplicial complex and let $V = \{x_1, \dots, x_n\}$ be the vertex set of C. Let s be a $(p-1)$ -face and let t be a p-face of C. The *incidence number* $I(s, t)$ is defined as follows: If $s \not\subset t$, then $I(s, t) = 0$. If $s \subset t$, suppose $t = \{x_{k_0}, \dots, x_{k_n}\}$ where $i_0 < i_1 < \cdots < i_p$. If $s = \{x_{i_0}, \cdots, x_{i_p}, \cdots, x_{i_n}\}$ (^ means deletion), then $I(s, t) =$ (-1) ['].

We regard the array $I(s, t)$ as a rectangular matrix of order $f_{p-1}(C) \times f_p(C)$, with rows corresponding to $(p - 1)$ -faces, and columns corresponding to p-faces. This matrix will be called the p -th incidence matrix of C, and denoted by $I^p(C)$.

REMARK. Usually it is assumed that the faces of C are oriented, and for $s \subset t$ the incidence number $I(s, t)$ is 1 if s is oriented coherently with t and -1 otherwise. Our definition coincides with this definition when the faces of C are oriented according to the order of their vertices. In fact, the results and proofs of the next sections will not depend on our concrete definition of $I(s, t)$.

Recall that the *p*-th chain group $C_p(C)$ ($p \ge 0$) is the free abelian group generated by the p-faces of C. The incidence matrix $I^p(C)$ ($p \ge 1$) represents the chain group homomorphism $\partial_p : C_p(C) \to C_{p-1}(C)$, i.e., the boundary operation, with respect to the standard bases of $C_p(C)$ and $C_{p-1}(C)$.

Recall that $Z_p(C)$ and $B_p(C)$, the groups of p-cycles and p-boundaries of C, are defined by $Z_p(C)$ = ker ∂_p and $B_p(C)$ = im ∂_{p+1} . Since $\partial_p \partial_{p+1} = 0$ (equivalently: $I_p(C)I_{p+1}(C) = 0$, $B_p(C) \subset Z_p(C)$, and the p-th homology group of C is defined by $H_p(C) = Z_p(C)/B_p(C)$. The abelian group $H_p(C)$ can be written as a sum $H_p(C) = F_p(C) \oplus T_p(C)$, where $F_p(C)$ is a free abelian group and $T_p(C)$ is a finite abelian group. $\beta_p(C)$ = rank $F_p(C)$ is called the p-th Betti number of C.

C is *acyclic* if $H_0(C) = \mathbb{Z}$ (i.e., C is connected) and $H_p(C) = 0$ for all $p > 0$. C is **Q-acyclic** if $H_0(C, \mathbf{Q}) = \mathbf{Q}$ and $H_p(C, \mathbf{Q}) = 0$ for all $p > 0$. Equivalently, C is

Q-acyclic if $\beta_0(C) = 1$ and $\beta_p(C) = 0$ for all $p > 0$. (Thus $H_p(C)$ is a finite group for all $p > 0.$)

We shall use the following elementary result:

PROPOSITION 1. Let K be a complete k-dimensional complex. Then $Z_k(C)$ is *freely generated by the boundaries of all* $(k + 1)$ -*faces, on vertices of K, that contain a fixed vertex.*

Occasionally we shall need the concept of collapsibility of a simplicial complex (see also [4]). A face s of a simplicial complex C is *free* if s is included in a unique maximal face of C. Let C be a simplicial complex, t a maximal face of C and s a free subface of t of dimension dim $t - 1$. The operation of deleting t and s from C is called an *elementary collapse. C* is *collapsible* if it can be reduced to the void complex by a sequence of elementary collapses. If C collapses to C' , then $H_k(C) = H_k(C')$ for every k. (In fact, C is homotopy equivalent to C'.) Thus, if C is collapsible it is acyclic.

3. Proof of the main theorem

For fixed $k > 1$ and $n > k$, let K be the complete k-dimensional complex on the vertex set $V = \{x_1, \dots, x_n\}$. Consider the class $\mathcal{A} = \mathcal{A}(n, k)$ of all subcomplexes of K with a complete $(k - 1)$ -skeleton.

For $C \in \mathcal{A}(n, k)$ define the *reduced incidence matrix* $I_r^k(C)$ to be the $\binom{n-1}{k} \times$ $f_k(C)$ matrix obtained from $I^k(C)$ by deleting all the rows that correspond to $(k - 1)$ -faces which contain the vertex x_1 .

Let $\mathscr{C} = \mathscr{C}(n, k)$ be the class of all members C of $\mathscr{A}(n, k)$ that satisfy any two of the following three additional conditions:

- (1) $f_k(C) = \binom{n-1}{k}$ (i.e., C has $\binom{n-1}{k}$ k-faces).
- (2) $H_k(C) = 0$.
- (3) $H_{k-1}(C)$ is a finite group.

PROPOSITION 2. *If* $C \in \mathcal{A}(n, k)$, then any two of the three assertions (1), (2), (3) *imply the third.*

PROOF. We use the following known simple identity for the Euler characteristic of C:

(*)
$$
\chi(C) = \sum_{i=0}^{k} (-1)^{i} f_{i}(C) = \sum_{i=0}^{k} (-1)^{i} \beta_{i}(C) \quad (\text{see e.g., [8, p. 172]).}
$$

Note that if $C \in \mathcal{A}(n, k)$ then C is connected (hence $\beta_0(C) = 1$), and

 $H_1(C) = 0$ for all $0 < i < k - 1$. This follows from the fact that C has a complete $(k-1)$ -skeleton. Thus the right hand side of (*) reduces to $1+(-1)^{k-1}\beta_{k-1}(C)$ + $(-1)^{k}\beta_{k}(C)$. Note also that

$$
\sum_{i=0}^{k-1}(-1)^{i}f_{i}(C)=\sum_{i=0}^{k-1}(-1)^{i}\binom{n}{i+1}=1-(-1)^{k}\binom{n-1}{k},
$$

and therefore (*) reduces to

(**)
$$
f_k(C) - {n-1 \choose k} = \beta_k(C) - \beta_{k-1}(C).
$$

Finally note that $H_{k-1}(C)$ is finite iff $\beta_{k-1}(C) = 0$, and that $H_k(C) = Z_k(C)$, and therefore $H_k(C) = 0$ iff $\beta_k(C) = 0$. This, together with (**), clearly implies Proposition 2.

REMARK. By Proposition 2, $\mathcal{C}(n, k)$ is precisely the family of k-dimensional **Q-acyclic complexes, on the vertex set V, with a complete** $(k - 1)$ **-skeleton.**

THEOREM 1.

$$
\sum_{C\in \mathscr{C}(n,k)}|H_{k-1}(C)|^2=n^{\binom{n-2}{k}}.
$$

OUTLINE OF PROOF. First we show (Lemmas 1, 2) that for $C \in \mathcal{A}(n, k)$, det $I_r^k(C) \neq 0$ iff $C \in \mathcal{C}(n, k)$, and that for $C \in \mathcal{C}(n, k)$, $H_{k-1}(C)$ is a finite group and det $I_r^k(C) = \pm |H_{k-1}(C)|$. We define $M = I_r^k(K)I_r^k(K)^{tr}$ (K is the complete k -dimensional complex on V). The Cauchy-Binet Theorem implies that

det
$$
M = \sum \{ (\det I^k(C))^2 : C \in \mathcal{C}(n, k) \}
$$

= $\sum \{ | H_{k-1}(C) |^2 : C \in \mathcal{C}(n, k) \}.$

It remains to show that

$$
\det M = n^{\binom{n-2}{k}}.
$$

This is done by showing that the eigenvalues of M are 1 and n with multiplicities $\binom{n-2}{k-1}$ and $\binom{n-2}{k}$ respectively.

Now we turn to the detailed proof of Theorem 1.

LEMMA 1.

$$
\operatorname{rank} I^{k}(K)=\operatorname{rank} I^{k}(K)=\binom{n-1}{k}.
$$

PROOF Each column of $I^k(K)$ is a vector in $B_{k-1}(K)$ (w.r.t. the standard base of $C_{k-1}(K)$) and therefore (by Proposition 1) a linear combination with integer coefficients of the columns corresponding to k -faces that contain x_1 . There are $\binom{n-1}{k}$ such columns, and therefore:

$$
\operatorname{rank} I_r^k(K) \leq \operatorname{rank} I^k(K) \leq \binom{n-1}{k}.
$$

But $I_r^k(K)$ restricted to these columns is just a signed permutation matrix: Each $(k - 1)$ -face not containing x_1 is included in exactly one k-face that contains x_1 , and vice versa. Thus $I_r^k(K)$ restricted to these columns is regular and the Lemma follows.

LEMMA 2. Suppose
$$
C \in \mathcal{A}(n, k)
$$
 and $f_k(C) = {n-1 \choose k}$. Then:
\n(1) det $I^k(C) = 0$ iff $H_k(C) \neq 0$.
\n(2) If $H_k(C) = 0$ then det $I^k(C) = \pm |H_{k-1}(C)|$.

PROOF (1) First note that $H_k(C) = Z_k(C)$ (since dim $C = k$), and that rank $I_r^k(C)$ = rank $I^k(C)$ (by Lemma 1). Define $m = \binom{n-1}{k}$, and let the columns c_1, \dots, c_m of $I_r^k(C)$ correspond to the k-faces s_1, \dots, s_m of C. Then det $I_r^k(C)$ = $0 \leftrightarrow$ rank $I_K^k(C)$ = rank $I^k(C)$ < m \leftrightarrow There are integers $\alpha_1, \dots, \alpha_m$, not all zero, s.t.

$$
\sum_{i=1}^m \alpha_i c_i = 0 \Leftrightarrow \sum_{i=1}^m \alpha_i \partial s_i = \partial \left(\sum_{i=1}^m \alpha_i s_i \right) = 0 \Leftrightarrow H_k(C) = Z_k(C) \neq 0.
$$

(2) $Z_{k-1}(C) = Z_{k-1}(K) = B_{k-1}(K)$ is the submodule of $C_{k-1}(C)$ generated by the columns of $I^k(K)$. $B_{k-1}(C)$ is the submodule of $C_{k-1}(C)$ generated by the columns of $I^k(C)$. Thus we have:

$$
H_{k-1}(C) = I^k(K)Z^{\binom{n}{k+1}}/I^k(C)Z^{\binom{n-1}{k}}.
$$

CLAIM.

$$
I^{k}(K)\mathbf{Z}^{k+1}\bigg/ I^{k}(C)\mathbf{Z}^{k+1}\bigg) = I^{k}(K)\mathbf{Z}^{k+1}\bigg/ I^{k}(C)\mathbf{Z}^{k+1}\bigg) = \mathbf{Z}^{k+1}(K)\mathbf{Z}^{k+1}(C)\mathbf{Z}^{k+1}(C)\mathbf{Z}^{k+1}
$$

PROOF OF THE CLAIM. Note that the operation of deleting rows corresponding to faces that contain x_1 induces an isomorphism of $I^k(K)\mathbb{Z}^{(k+1)}_{\geq n-1}$ onto $I_K^k(C)\mathbf{Z}^{(k+1)}$, and this isomorphism maps $I^k(C)\mathbf{Z}^{(k)}$ onto $I_K^k(C)\mathbf{Z}^{(k)}$. The equality

$$
I_r^k(K)\mathbf{Z}^{\binom{n}{k+1}}=\mathbf{Z}^{\binom{n-1}{k}}
$$

holds, since $I_r^k(K)$ has a signed permutation submatrix of order $\binom{n-1}{k}$.

It follows that

$$
H_{k-1}(C) = \mathbf{Z}^{\binom{n-1}{k}} / I_r^k(C) \mathbf{Z}^{\binom{n-1}{k}}.
$$

A standard result concerning lattices in \mathbb{Z}^m (see [3, ch. 1]) asserts that if A is an integer valued $m \times m$ matrix with $|\det A| = t \neq 0$, then $\mathbb{Z}^m / A \mathbb{Z}^m$ is a finite group of order t. Therefore in our case $H_{k-1}(C)$ is a finite group of order $|\det I_r^k(C)|.$

PROOF OF THEOREM 1 (cont.). Define $M = I_r^k(K)I_r^k(K)^{r_r}$. M is a square matrix of order $\binom{n-1}{k}$. *M(s, s)* is the scalar product of the rows of $I_K^k(K)$ that correspond to the $(k - 1)$ -faces s and \hat{s} of K. Thus

$$
M(s, \hat{s}) = \begin{cases} n-k & \text{if } s = \hat{s}, \\ 0 & \text{if } |s \cup \hat{s}| > k+1, \\ I(s, s \cup \hat{s})I(\hat{s}, s \cup \hat{s}) & \text{if } |s \cup \hat{s}| = k+1. \end{cases}
$$

LEMMA 3. det $M = n^{(\binom{n-1}{k})}$.

PROOF Let K^* be the restriction of K to the vertex set $V^* = \{x_2, x_3, \dots, x_n\}$. K^* is the complete k-dimensional complex over V^* . The proof is based upon the following observations:

(1) $M-I = I^k(K^*)I^k(K^*)^{\text{tr}}$.

 $I^k(K^*)$ is obtained from $I_r^k(K)$ by deleting the columns of $I_r^k(K)$ that correspond to k -faces of K that contain x_1 . The scalar product of two different rows in $I_r^k(K)$ corresponding to the $(k-1)$ -faces s and s is the same as their product in $I^k(K^*)$, since if $t = s \cap \hat{s}$ is a k-face then $x_1 \notin t$. In every row of $I^k(K)$ there is exactly one non-zero entry in columns corresponding to k -faces which contain x_1 . Thus in passing from $I_f^k(K)$ to $I^k(K^*)$ the scalar product of every row with itself is reduced by one.

(2) $M - nI = -I^{k-1}(K^*)^{tr} I^{k-1}(K^*)$.

Note that

$$
(I^{k-1}(K^*)^{tr} I^{k-1}(K^*)) (s, \hat{s}) = \begin{cases} k & \text{if } s = \hat{s}, \\ 0 & \text{if } |s \cap \hat{s}| < k - 1, \\ I(s \cap \hat{s}, s) I(s \cap \hat{s}, \hat{s}) & \text{if } |s \cap \hat{s}| = k - 1. \end{cases}
$$

$$
I(s \cap \hat{s}, s)I(s, s \cup \hat{s}) + I(s \cap \hat{s}, \hat{s})I(\hat{s}, s \cup \hat{s}) = 0
$$

or, equivalently,

$$
I(s, s \cup \hat{s})I(\hat{s}, s \cup \hat{s}) = -I(s \cap \hat{s}, s)I(s \cap \hat{s}, \hat{s}),
$$

which is exactly what we need.

Now we return to the proof of the Lemma. From (1) and Lemma 1 we obtain:

$$
rank (M - I) \leq rank I^k(K^*) = \binom{n-2}{k}.
$$

From (2) and Lemma 1 we obtain:

$$
rank(M - nI) \leq rank I^{k-1}(K^*) = {n-2 \choose k-1}.
$$

Thus 1 is an eigenvalue of M with multiplicity m_1 ,

$$
m_1 \geq {n-1 \choose k} - {n-2 \choose k} = {n-2 \choose k-1}.
$$

Similarly, *n* is an eigenvalue of *M* with multiplicity m_2 ,

$$
m_2 \geq {n-1 \choose k} - {n-2 \choose k-1} = {n-2 \choose k}.
$$

Since

$$
m_1+m_2\leq \binom{n-1}{k},
$$

it follows that

$$
m_1 = {n-2 \choose k-1}
$$
, $m_2 = {n-2 \choose k}$, and $det M = n^{n-2 \choose k}$.

PROOF OF THEOREM 1 (end). The Cauchy-Binet Theorem (see [4, p. 9]) states that if R and S are matrices of respective sizes $p \times q$ and $q \times p$ with $p \leq q$, then $\det(RS) = \sum \det(B) \det(C)$, where the sum extends over all $p \times p$ square submatrices B of R and C of S such that the columns of R in B are numbered the same as the rows of S in C. Thus we have, by Lemma 3 and Lemma 2,

$$
n^{(\binom{n-2}{k})} = \det M
$$

= $\sum \{ \det(I^k(C)I^k(C)^n) : C \in \mathcal{A}(n, k), f_k(C) = \binom{n-1}{k} \}$
= $\sum \{ |H_{k-1}(C)|^2 : C \in \mathcal{A}(n, k), f_k(C) = \binom{n-1}{k}, H_k(C) = 0 \}$
= $\sum_{C \in \mathcal{C}(n, k)} |H_{k-1}(C)|^2$.

4. Further high-dimensional enumeration theorems

Further results concerning tree enumeration can also be generalized to high dimensions. The following examples may serve as an illustration. Associate with each face t of K (= the complete k-complex on $\{x_1, \dots, x_n\}$) a variable e_i . We assume that all these variables commute, and write e_i for $e_{\{x_i\}}$. Define, for $C \in \mathcal{C}(n, k)$, $\Pi(C) = \Pi\{e_i : t \in C$, dim $t = k\}$. Let G be a member of $\mathcal{A}(n, k)$ with $f_k(G) = b$. For a k-face t of G define $Y(t, t) = e_k$. We regard $Y(= Y(G))$ as a diagonal matrix of order b. The following result is an immediate consequence of Lemma 2 and the Cauchy-Binet Theorem.

THEOREM 2. *For any* $G \in \mathcal{A}(n, k)$ (4.1) $\det(I^k(G)Y(G)I^k(G)^{tr}) = \sum\{|H_{k-1}(C)|^2\Pi(C): C \in \mathcal{C}(n,k), C \subset G\}.$

Now we pass to Theorem 3 from Section 1. For $C \in \mathcal{A}(n, k)$ define $\Pi_0(C)$ = $\prod_{i=0}^{n} e^{deg_c x_i}$. Theorem 3 is clearly equivalent to

THEOREM Y. *Let*

$$
m_1=\binom{n-2}{k-1},\qquad m_2=\binom{n-2}{k}.
$$

Then

(4.2)
$$
\sum_{e \in \mathscr{C}(n,k)} |H_{k-1}(C)|^2 \Pi_0(C) = (e_1 + e_2 + \cdots + e_n)^{m_2} \prod_{i=1}^n e_i^{m_1}.
$$

SKETCH OF PROOF OF THEOREM 3'. Denote the left hand side of (4.2) by A, and the right hand side by B. For a face u define $\pi_0(u) = \prod\{e_u : x_v \in u\}$, and put $d(u) = \pi_0(u)^{1/2}$. For two p-faces u and w which do not contain x_1 , define

$$
D_{\nu}(u, w) = \begin{cases} d(u) & \text{if } u = w, \\ 0 & \text{if } u \neq w. \end{cases}
$$

We regard D_p as a diagonal matrix of order $\binom{n-1}{p+1}$.

Apply Theorem 2 with $G = K$ and with the substitution $e_t \to \pi_0(t)$. This substitution yields A on the right hand side of (4.1) . On the left hand side of (4.1) we obtain a determinant that can be rewritten as $\det(D_{k-1}\hat{M}D_{k-1})$, where $\hat{M}(s,s) = \sum \{e_v : x_v \notin s\}$, and $\hat{M}(s,s') = M(s,s')d(s\Delta s')$ for $s \neq s'$. (Here $M = I_r^k(K)I_r^k(K)^{tr}$, as in the proof of Theorem 1.) It remains to show that det $(D_{k-1}\hat{M}D_{k-1}) = B$, or equivalently, that det $\hat{M} = e_1^m (e_1 + e_2 + \cdots + e_n)^{m_2}$ (since $(\det D_{k-1})^2 = \prod_{i=2}^n e_i^{m_i}$).

As in the proof of Lemma 3, it suffices to show that rank $(\hat{M} - e_1 I) \leq m_2$ and rank $(\hat{M} - (e_1 + \cdots + e_n)I) \leq m_1$. This is done by the following observations:

(1) $\hat{M} - e_1 I = J J^{\text{tr}}$, where $J(s, t) = d^{-1}(s)I^k(K^*)(s, t) d(t)$. Here $K^* = K \setminus x_1$, as in the proof of Lemma 3, s ranges over all $(k - 1)$ -faces of K^* , and t ranges over all k -faces of K^* .

(2) $\hat{M} - (e_1 + \cdots + e_n)I = -\hat{J}^{\text{tr}}\hat{J}$, where $\hat{J}(r,s) = d^{-1}(r)I^{k-1}(K^*)(r,s)d(s)$. (Here r ranges over all $(k-2)$ -faces of K^* .)

For $C \in \mathcal{A}(n, k)$ define:

$$
\Pi_p(C) = \Pi\{e^{\deg_C u}: u \in C, \dim u = p\}.
$$

PROBLEM 1. Find an explicit evaluation of $\Sigma_{C \in \mathscr{C}(n,k)} | H_{k-1}(C)|^2 \Pi_p(C)$ for $p>0$.

5. An application

Here we shall prove as a corollary of Theorem 1, that Q-acyclic complexes in $\mathcal{A}(n, k)$ (i.e., members of $\mathcal{C}(n, k)$) are, on the average, far from being acyclic.

THEOREM 4. For fixed $k > 1$, (1) If $C \in \mathcal{C}(n, k)$ then

$$
|H_{k-1}(C)|^2 \leq (k+1)^{\binom{n-2}{k}}.
$$

(2) *For sufficiently large n (i.e.,* $n > n_0(k)$ *), the expectation of* $|H_{k-1}(C)|^2$ *over all members of* $\mathcal{C}(n, k)$ *satisfies*:

$$
E(|H_{k-1}(C)|^2: C \in \mathscr{C}(n,k)) > \left(\frac{k+1}{2.8}\right)^{\binom{n-2}{k}}.
$$

PROOF. (1) Suppose $C \in \mathcal{C}(n, k)$, and let t be a k-face of C. The number of nonzero entries in the column of $I_r^k(C)$ that corresponds to t is $k + 1$ if $x_1 \notin s$, or one if $x_1 \in s$. Note that

$$
\deg_c x_1 \geq \binom{n-2}{k-1}.
$$

(This follows from Theorem 3.) Therefore at most $\binom{n-2}{k}$ k-faces of C miss x_1 . It follows by Lemma 2 and Hadamard's inequality, that

$$
|H_{k-1}(C)| = |\det(I_r^k(C))| \le \sqrt{k+1}^{\binom{n-2}{k}}.
$$

(2) Define

(5.1)
$$
\mathscr{A}_0(n,k) = \left\{ C \in \mathscr{A}(n,k) : f_k(C) = \binom{n-1}{k} \right\}.
$$

By Theorem 1 the average of $|H_{k-1}(C)|^2$ over $\mathcal{C}(n, k)$ is

$$
n^{\binom{n-2}{k}} \cdot |\mathcal{C}(n,k)|^{-1} \geq n^{\binom{n-2}{k}} \cdot |\mathcal{A}_0(n,k)|^{-1}
$$

=
$$
n^{\binom{n-2}{k}} \cdot \binom{n}{\binom{n-1}{k}}^{-1} \geq n^{\binom{n-2}{k}} \cdot \binom{n-1}{k}! \cdot \binom{n}{k+1}^{-\binom{n-1}{k}}
$$

By Stirling's Formula, we can continue:

$$
\geq n^{\binom{n-2}{k}} \cdot \binom{n-1}{k}^{\binom{n-1}{k}} \cdot e^{-\binom{n-1}{k}} \cdot \binom{n}{k+1}^{\binom{n-1}{k}} = n^{\binom{n-2}{k}} \cdot \left(\frac{k+1}{en}\right)^{\binom{n-1}{k}}
$$

$$
= \left(\frac{k+1}{e}\right)^{\binom{n-1}{k}} \cdot n^{-\binom{n-2}{k-1}} = \left(\frac{k+1}{e}\right)^{\binom{n-2}{k}} \cdot \left(\frac{k+1}{en}\right)^{\binom{n-2}{k-1}}.
$$

One can easily check that the last expression is

$$
>\left(\frac{k+1}{2.8}\right)^{\binom{n-2}{k}}
$$

for n large.

We conclude this section with some problems concerning possible estimations of the number of complexes in $\mathcal{C}(n,k)$ and in some related families of complexes.

Consider the following subfamilies of $\mathcal{A}_0(n, k)$ (see (5.1)):

 $\mathscr{C}_0(n, k)$ -- acyclic complexes in $\mathscr{A}(n, k)$.

- $\mathcal{D}(n, k)$ collapsible complexes in $\mathcal{A}(n, k)$.
- $\mathcal{B}(n, k)$: A complex C in $\mathcal{A}_0(n, k)$ belongs to $\mathcal{B}(n, k)$ if C does not contain the boundary of a $(k + 1)$ -simplex.

Obviously $\mathcal{D}(n, k) \subset \mathcal{C}_0(n, k) \subset \mathcal{C}(n, k) \subset \mathcal{B}(n, k) \subset \mathcal{A}(n, k).$

PROBLEM 2. Estimate $|\mathcal{C}(n,k)|, |\mathcal{C}_0(n,k)|$, and $|\mathcal{D}(n,k)|$.

348 G. KALAI Isr. J. Math.

Let $k > 1$ be fixed. We conjecture that for sufficiently large *n* most complexes in $\mathcal{B}(n, k)$ are also in $\mathcal{C}(n, k)$. We also conjecture that for n large enough most complexes in $\mathcal{C}_0(n, k)$ are not in $\mathcal{D}(n, k)$. (Note that the average degree of a $(k - 1)$ -face in $\mathcal{C}(n, k)$ is $(k + 1)(n - k)/n$.)

6. Duality

It follows from Theorem 1 that

$$
\sum_{C \in \mathcal{C}(n+2,k)} |\hat{H}_{k-1}(C)|^2 = (n+2)\binom{n}{k} = \sum_{C \in \mathcal{C}(n+2,n-k)} |\hat{H}_{n-k-1}(C)|^2 \quad \text{for } 0 < k < n.
$$

As we shall see, there is a natural bijection $C \rightarrow B(C)$ between $\mathcal{C}(n + 2, k)$ and $\mathcal{C}(n+2, n-k)$ such that $\hat{H}_{k-1}(C) \approx \hat{H}_{n-k-1}(B(C))$. (Here we use the reduced homology $\hat{H}_*(C)$, so as to include the values $k = 1$ and $k = n - 1$.

Let $V = \{x_1, \dots, x_{n+2}\}\$ be a fixed vertex set. For a simplicial complex C on the vertex set V, define

$$
B(C) = \{ S \subset V : V \setminus S \not\in C \}.
$$

B(C) is sometimes called the *blocker* of C.

The reader will easily verify the following properties of *B(C).*

- *1. B(C)* is a simplicial complex.
- 2. $C \subset C'$ iff $B(C') \subset B(C)$.
- 3. $B(B(C)) = C$.
- 4. $f_i(C) + f_{n-i}(B(C)) = {n+2 \choose i+1}.$
- 5. C is isomorphic to C' iff $B(C)$ is isomorphic to $B(C')$.
- 6. $C \in \mathcal{A}(n+2, k)$ iff $B(C) \in \mathcal{A}(n+2, n-k)$.
- 7. C collapses to C' iff $B(C')$ collapses to $B(C)$.
- THEOREM 5. (a) $C \in \mathcal{C}(n+2, k)$ *iff* $B(C) \in \mathcal{C}(n+2, n-k)$. (b) *For* $C \in \mathcal{C}(n+2, k)$, $\hat{H}_{k-1}(C) \approx \hat{H}_{n-k-1}(B(C))$.

PROOF (sketch). It follows from the Alexander Duality Theorem (see [6, ch. 5] or [1, vol. 3 pp. 24-26] for a suitable version of the Alexander Duality Theorem), that for a simplicial complex C

$$
\hat{H}_{k-1}(C) \approx \hat{H}^{n-k}(B(C)).
$$

Let $\hat{H}_i(C) = F_i(C) \bigoplus T_i(C), \hat{H}^i(C) = F^i(C) \bigoplus T^i(C)$, where $F_i(C) [F^i(C)]$ and $T_i(C)$ [T^{*i*}(C)] are respectively the free part and the torsion of $\hat{H}_i(C)$ [\hat{H} ^{*i*}(C)]. It is known (see [6, p. 168] or [8, pp. 241-244]) that

$$
F^i(C) \approx F_i(C)
$$
 and $T^i(C) \approx T_{i-1}(C)$.

It follows that $C \in \mathcal{C}(n+2, k)$ iff $B(C) \in \mathcal{C}(n+2, n-k)$, and that for $C \in$ $\mathscr{C}(n + 2, k)$

$$
\hat{H}_{k-1}(C) \approx \hat{H}^{n-k}(B(C)) \approx T^{n-k}(B(C)) \approx T_{n-k-1}(B(C)) \approx \hat{H}_{n-k-1}(B(C)).
$$

Finally note that if $C \in \mathcal{C}(n+2, k; m+d_1, \dots, m+d_{n+2})$, then

$$
B(C) \in \mathcal{C}(n+2, n-k; m'+d_1, \cdots, m'+d_{n+2}),
$$

where $m = \binom{n}{k-1}$ and $m' = \binom{n}{n-k-1}$.

7. Some examples

In this section we describe in some detail the families $\mathcal{C}(n, 2)$ for $n \leq 6$.

If $C \in \mathcal{C}(n, 2)$ and x is a vertex of C, then link (x, C) is a graph. Using the fact that $H_1(C, Q) = 0$, it is easy to show that link (x, C) is connected for every vertex X.

 $\mathscr{C}(3, 2)$ consists of a single complex -- a triangle. $\mathscr{C}(4, 2)$ consists of the four isomorphic complexes obtained by taking three of the 2-faces of the simplex on four vertices. $\mathcal{C}(5, 2)$ consists of three isomorphism types of complexes which are dual (in the sense of Section 6) to the three isomorphism types of trees on 5 vertices. All these complexes are collapsible.

For $C \in \mathcal{C}(6,2)$, if some vertex z has degree 4, then link (z, C) is a tree, and therefore the faces that contain this vertex can be collapsed one by one, and the whole complex collapses to a complex in $\mathcal{C}(5,2)$ and thus is collapsible. There are altogether 45,936 ($= 6^6 - 720$) such complexes. The remaining complexes, with all vertices of degree 5, fall into four isomorphism types (see Table 1). Three of them, with automorphism groups of orders 2, 3 and 10 respectively (altogether 672 complexes), are again collapsible and are counted in Theorem 1 just once. The last isomorphism type contains the triangulations of the projective plane $P²$ that are obtained by identifying opposite faces of a regular isocahedron. Here the automorphism group is of order 60, and therefore there are 12 different triangulations. Since $H_1(P^2) = \mathbb{Z}_2$, each such complex is counted four times in Theorem 1.

Finally we would like to draw attention to the subfamily of self-dual complexes in $\mathcal{C}(6, 2)$. $C \in \mathcal{A}(2n, n-1)$ is self dual if $B(C) = C$ or equivalently if $s \cap t \neq \emptyset$ for every two $(n - 1)$ -faces s and t of C.

There are 4 isomorphism types of self-dual complexes in $\mathcal{C}(6, 2)$ (see Table 2).

350 G. KALAI Isr. J. Math.

2-faces	1 2 3 4 5 6 1 2 3 4 5 6						
$C_2 \xrightarrow{\quad 123 \ 134 \ 145 \ 156 \ 126} \xrightarrow{\qquad} \xrightarrow{\qquad} \xrightarrow{\qquad} \xrightarrow{\qquad} \xrightarrow{\qquad} \xrightarrow{\qquad} \xrightarrow{\qquad} \xrightarrow{\qquad} \xrightarrow{Z_2} \xrightarrow{\qquad} \xrightarrow{\qquad} 360$							

Table 1. Complexes in $\mathcal{C}(6,2)$ with degree sequence $(5,5,5,5,5,5)$

* Number of complexes in $\mathcal{C}(6,2)$ isomorphic to $C = 720/|\text{Aut}(C)|$).

C	degrees	2-faces	Aut (C)	\ast	
D,	10, 4, 4, 4, 4, 4	123 124 125 126 134 135 136 145 146 156	S_5	6	
D,	8, 6, 4, 4, 4, 4	123 124 125 126 134 135 146 156 245 236	$(Z_2)^3$	90	
D,	6, 6, 6, 4, 4, 4	123 124 134 125 136 156 235 236 246 345	s,	120	
Ρ,	5, 5, 5, 5, 5, 5	See Table 1			

Table 2. Self-dual complexes in $\mathcal{C}(6,2)$

* Number of complexes in $\mathcal{C}(6,2)$ isomorphic to C.

The total number of self-dual complexes which are not isomorphic to P_2 is 6^3 $(= \sqrt{6})$. Moreover

$$
\Sigma\{|H_1(C)|^2\Pi_0(C):C\in\mathscr{C}(6,2),\,B(C)=C,\,C\neq P^2\}=(e_1^2+e_2^2+\cdots+e_6^2)^3\prod_{i=1}^6e_i^4.
$$

A trivial check shows a similar phenomenon in $\mathcal{C}(4, 1)$.

PROBLEM 3. Extend the above observation to self-dual complexes in $\mathscr{C}(2n, n-1)$. (For a related result concerning enumeration of trees see [9].)

REFERENCES

1. P. S. Aleksandrov, *Combinatorial Topology,* Graylock Press, 1960.

2. N. L. Biggs, *Algebraic Graph Theory,* Cambridge University Press, 1974.

3. J. W. S. Cassels, *An Introduction to the Geometry of Numbers,* Springer Verlag, 1959.

4. Marshal M. Cohen, *A Course in Simple Homotopy Theory,* GTM Springer Verlag, 1970.

5. F. R. Gantmacher, *The Theory of Matrices,* Chelsea Publ. Co., 1960.

6. C. R. F. Maunder, *Algebraic Topology,* Van Nostrand, 1970.

7. J. W. Moon, *Counting Labelled Trees,* Canadian Mathematical Congress, 1970.

8. E. H. Spanier, *Algebraic Topology,* McGraw-Hill, 1966.

9. W. Tutte, *On the spanning trees of self-dual maps,* in *Second International Conference on Combinatorial Mathematics* (A. Gewirtz and L. V. Quintas, eds.), The New York Academy of Science, 1979, pp. 540-548.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM. ISRAEL